115 research outputs found

    Geodemography: Land cover, geographical information systems and population distribution

    Get PDF
    This paper examines the recent application of the Geographical Information Systems (GIS) to the analysis of population distribution. We mention the efforts of the National Statistical Institutes in this direction boosted by the last census 2011.The stating point is a growing need to have available population figures for areas not related to administrative boundaries, either user defined zones or in grid format.This allows a convenient zonal system to combine demographic characteristics with environmental and pure geographic data, so the relation between the man and the environment can be analyzed in a unified way.Eventually, we offer a practical illustration of the interactions between GIS techniques and administrative population data in the study of spatial population distribution: We build a density grid for Spain by dasymetric methods from census tracts population data and Land Cover and Use Information System of Spain (SIOSE).The analysis is done within the spatial reference framework of the European Union

    Grid Poblacional 2011 para España

    Get PDF
    [ES] Este trabajo presenta una evaluación, desde el punto de vista del usuario, de la malla regular (grid) de población, con resolución de 1 km2, que el Instituto Nacional de Estadística (INE) ha hecho pública a partir de los resultados del Censo de Población y Viviendas 2011. Esta forma de difusión de resultados resulta muy novedosa y ofrece un gran valor analítico. Por primera vez esta información sobre la distribución espacial de la población se ha generado desde abajo (bottom-up) para el conjunto de España, es decir, a partir del conocimiento de las coordenadas de cada hogar, considerando como tales las del edificio donde reside. La disponibilidad de otra grid con idéntica resolución, elaborada por métodos de desagregación espacial a partir de la población censal por unidades administrativas e información auxiliar sobre coberturas del suelo (top-down), nos permite examinar las mejoras asociadas a la georreferenciación de la población acometida en el contexto de los cambios metodológicos del censo de 2011. De forma simultánea ello nos permite analizar las bondades de la grid censal.Goerlich-Gisbert, F.; Cantarino-Martí, I. (2017). Grid Poblacional 2011 para España. Estudios Geográficos. LXXVIII(282):135-163. doi:10.3989/estgeogr.201705S135163LXXVIII282Batista e Silva, F. (2011): "The effect of ancillary data in population dasymetric mapping: A test case using the original and a modified version of CORINE Land Cover", presentado en el European Forum for Geography and Statistics Conference (EFGS), Lisboa (Portugal), 12-14 de octubre de 2011.Batista e Silva, F., Lavalle, C., & Koomen, E. (2013). A procedure to obtain a refined European land use/cover map. Journal of Land Use Science, 8(3), 255-283. doi:10.1080/1747423x.2012.667450De Cos Guerra, Olga (2004): "Valoración del método de densidades focales (kernel) para la identificación de los patrones espaciales de crecimiento de la población de Espa-a", Geofocus, 4, pp. 136-165.Eicher, C. L., & Brewer, C. A. (2001). Dasymetric Mapping and Areal Interpolation: Implementation and Evaluation. Cartography and Geographic Information Science, 28(2), 125-138. doi:10.1559/152304001782173727Gallego, F. J., Batista, F., Rocha, C., & Mubareka, S. (2011). Disaggregating population density of the European Union with CORINE land cover. International Journal of Geographical Information Science, 25(12), 2051-2069. doi:10.1080/13658816.2011.583653García González, J. A. y Cebrián Abellán, F. (2006): "La interpolación como método de representación cartográfica para la distribución de la población: Aplicación a la provincia de Albacete", ponencia presentada en el XII Congreso Nacional de Tecnologías de la Información Geográfica, Granada, 19-23 de septiembre de 2006.Goerlich, F. J. y Cantarino, I. (2011): "Population Grid for Spain – SIOSE", presentado en el European Forum for Geography and Statistics Conference (EFGS), Lisboa (Portugal), 12-14 de octubre de 2011.Goerlich, F. J. y Cantarino, I. (2012): Una grid de densidad poblacional para Espa-a . Informe Economía y Sociedad, Bilbao, Fundación BBVA, 182 pp.Goerlich, F. J., & Cantarino, I. (2013). A population density grid for Spain. International Journal of Geographical Information Science, 27(12), 2247-2263. doi:10.1080/13658816.2013.799283Goerlich, F. J. y Cantarino, I. (2014): "Comparing bottom-up and top-down population density grids: The Spanish Census 2011", presentado en el European Forum for Geography and Statistics Conference (EFGS), Cracovia (Polonia), 22-24 de octubre de 2014.Goerlich, F. J., Ruiz, F., Chorén, P. y Albert, C. (2015): Cambios en la estructura y localización de la población: una visión de largo plazo (1842-2011), Bilbao, Fundación BBVA, 354 pp.Kumar, N. (2012): "Spatial sampling design for a demographic and health survey", Population Research Policy Review, 26/5, pp. 581-599.Martin, D., Tate, N. J., & Langford, M. (2000). Refining Population Surface Models: Experiments with Northern Ireland Census Data. Transactions in GIS, 4(4), 343-360. doi:10.1111/1467-9671.00060Mennis, J., & Hultgren, T. (2006). Intelligent Dasymetric Mapping and Its Application to Areal Interpolation. Cartography and Geographic Information Science, 33(3), 179-194. doi:10.1559/152304006779077309Ojeda, J., Márquez, J. y Álvarez, J. I. (2012): "Análisis de redes y sensibilidad a la unidad mínima de información poblacional: Sanlúcar de Barrameda (Cádiz)", en XV Congreso Nacional de Tecnologías de la Información Geográfica, AGE-CSIC, Madrid.Santos Preciado, J. M. (2015). La cartografía catastral y su utilización en la desagregación de la población. Aplicación al análisis de la distribución espacial de la población en el municipio de Leganés (Madrid). Estudios Geográficos, 76(278), 309-333. doi:10.3989/estgeogr.201511Steinocher, K. (2011a): "The European Dataset: The disaggregation issue", presentado en el European Forum for Geography and Statistics Conference (EFGS), Lisboa (Portugal). 12-14 de octubre de 2011.Steinocher, K. (2011b): "A new population grid for Europe – chances and challenges", presentado en el European Forum for Geography and Statistics Conference (EFGS), Lisboa (Portugal), 12-14 de octubre de 2011.Vinuesa Angulo, J. (1976): El Desarrollo Metropolitano de Madrid: Sus Repercusiones Geodemográficas, Madrid, Instituto de Estudios Madrile-os, 364 pp.Wang, J.-F., Stein, A., Gao, B.-B., & Ge, Y. (2012). A review of spatial sampling. Spatial Statistics, 2, 1-14. doi:10.1016/j.spasta.2012.08.00

    Geodemografía: coberturas del suelo, sistemas de información geográfica y distribución de la población

    Get PDF
    Los gráficos y mapas de este trabajo se aprecian con más nitidez en la versión electrónica en color, que en su traslación al papel impreso en blanco y negro, además de ser más sostenible. http://www.investigacionesregionales.org[EN] This paper examines the recent application of the Geographical Information Systems (GIS) to the analysis of population distribution. We mention the efforts of the National Statistical Institutes in this direction boosted by the last census 2011. The stating point is a growing need to have available population figures for areas not related to administrative boundaries, either user defined zones or in grid format. This allows a convenient zonal system to combine demographic characteristics with environmental and pure geographic data, so the relation between the man and the environment can be analyzed in a unified way. Eventually, we offer a practical illustration of the interactions between GIS techniques and administrative population data in the study of spatial population distribution: We build a density grid for Spain by dasymetric methods from census tracts population data and Land Cover and Use Information System of Spain (SIOSE). The analysis is done within the spatial reference framework of the European Union.[ES] Este trabajo examina la reciente aplicación de las técnicas derivadas de los Sistemas de Información Geográfica (GIS) al análisis de la distribución de la población sobre el territorio. Se muestran los recientes esfuerzos de los Institutos Nacionales de Estadística Europeos en esta dirección con ocasión del último censo, así como los resultados esperables de dicho trabajo. El punto de partida es una creciente necesidad de disponer de cifras de población en sistemas zonales no ligados a los caprichosos lindes administrativos de un país o región. Ello permite tanto homogeneizar el espacio físico sobre el que medir la distribución de la población, como evitar distorsiones ligadas al tamaño de los municipios o provincias. Pero el argumento de más enjundia deriva de la necesidad de globalizar las estadísticas; es decir de ser capaces de integrar información cuyo marco de recopilación natural no son las artificiales fronteras delineadas por el hombre, fundamentalmente estadísticas medioambientales y geográficas, con información demográfica y de carácter socio-económico, y poder de esta forma estudiar las relaciones entre economía y medio ambiente en un sistema unificado. Finalmente, el trabajo ilustra una aplicación concreta: la construcción de una grid de densidad poblacional para España utilizando como información auxiliar las recientes bases de datos sobre ocupación del suelo (SIOSE), todo ello en el marco de los sistemas de referencia espacial armonizados con la Unión Europea.Los autores agradecen a Matilde Mas los comentarios realizados a una versión inicial de este trabajo. Al mismo tiempo se agradece la ayuda financiera del proyecto del Ministerio de Ciencia y Tecnología ECO2011-23248 y del programa de investigación Fundación BBVA-IvieGoerlich Gisbert, FJ.; Cantarino Martí, I. (2013). Geodemografía: coberturas del suelo, sistemas de información geográfica y distribución de la población. Investigaciones Regionales. (25):165-191. http://hdl.handle.net/10251/58973S1651912

    The European concept of city: An application to Spain

    Get PDF
    Resultados mucho más extensos, así como la información cartográfica que acompaña a este trabajo, puede verse en la versión de Documento de Trabajo del mismo (http://www.ivie.es/es/wp-ec/2013- 6-redefiniendo-ciudades.php).Este trabajo presenta un ejercicio de determinación de ciudades a partir de los criterios desarrollados en el seno de Eurostat y la DG-Regio. El concepto de ciudad se vincula a los centros de decisión a nivel local, es decir se trata de «ciudades administrativas» en el sentido de que están constituidas por un municipio o agrupación de municipios físicamente contiguos. No se trata de aglomeraciones puras de población, que satisfacen ciertos criterios de densidad y volumen mínimo, sino que, partiendo de estas aglomeraciones, a las que denominaremos centros urbanos, se las vincula a los municipios a partir de reglas prefijadas. Las limitaciones principales de este enfoque son fundamentalmente dos; por una parte el enfoque es puramente demográfico, es decir es la concentración de población la que acaba determinando las ciudades, mientras que otros aspectos, como las coberturas del suelo y la estructura productiva, quedan al margen. Por otra parte, la propuesta de ciudades debe asociarse más con núcleos urbanos que con las grandes áreas urbanas que incluyen la ciudad central y su radio de influencia. La razón es que la movilidad intra-día (conmmuting) no es considerada en esta primera etapa de análisis. La generación de centros urbanos, y la vinculación de éstos con la definición de las ciudades se realiza mediante simples operaciones en el contexto de los Sistemas de Información Geográfica (SIG).[EN] This paper presents an exercise in the determination of cities from clear and explicit quantitative criteria developed by Eurostat and the DG-Regio. The city concept is linked to the local political level, so in this sense we can talk about «administrative cities», since they are formed by one municipality, or a group of them that are physically contiguous. They are not pure population agglomerations satisfying certain criteria in terms of exceeding a threshold and/or a minimum density. We start from these urban agglomerations, called urban centers, but eventually we link them to municipalities. The main limitations of the analysis are two; on the one hand, the analysis is purely demographic, in the sense that it is the population concentration that eventually determines the number and extend of cities, other aspects such as land cover or the economic structure is absent from the analysis. On the other hand, the proposal is in line with the urban core concept, more than with the urban areas or larger urban zones that includes the urban core and its hinterland. This is so because commuting has not been taken into account in the first stage of the analysis. Building urban centers and linking them to municipalities is accomplished by means of simple Geographical Information System operations (GIS)Los autores agradecen una ayuda del Instituto Valenciano de Investigaciones Económicas (Ivie) para la realización de este trabajo. Francisco J. Goerlich agradece la ayuda del proyecto del Ministerio de Ciencia y Tecnología ECO2011-23248 y del programa de investigación Fundación BBVA-Ivie. Resultados mucho más extensos, así como la información cartográfica que acompaña a este trabajo, puede verse en la versión de Documento de Trabajo del mismo (http://www.ivie.es/es/wp-ec/2013- 6-redefiniendo-ciudades.php)Cantarino Martí, I.; Goerlich Gisbert, FJ. (2014). El concepto europeo de ciudad: una aplicación para España. Investigaciones Regionales. 30:145-156. http://hdl.handle.net/10251/57784S1451563

    A population density grid for Spain

    Full text link
    This is an author's accepted manuscript of an article published in "International Journal of Geographical Information Science"; Volume 27, Issue 12, 2013; copyright Taylor & Francis; available online at: http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.799283This article describes a high-resolution land cover data set for Spain and its application to dasymetric population mapping (at census tract level). Eventually, this vector layer is transformed into a grid format. The work parallels the effort of the Joint Research Centre (JRC) of the European Commission, in collaboration with Eurostat and the European Environment Agency (EEA), in building a population density grid for the whole of Europe, combining CORINE Land Cover with population data per commune. We solve many of the problems due to the low resolution of CORINE Land Cover, which are especially visible with Spanish data. An accuracy assessment is carried out from a simple aggregation of georeferenced point population data for the region of Madrid. The bottom-up grid constructed in this way is compared to our top-down grid. We show a great improvement over what has been reported from commune data and CORINE Land Cover, but the improvements seem to come entirely from the higher resolution data sets and not from the statistical modeling in the downscaling exercise. This highlights the importance of providing the research community with more detailed land cover data sets, as well as more detailed population data. The dasymetric grid is available free of charge from the authors upon request.The authors acknowledge financial support from the BBVA Foundation-Ivie research programme and the first author also acknowledges support from the Spanish Ministry of Science and Technology, ECO2011-23248 project. Results mentioned, but not shown, are available from the authors upon request. The grid numbers are also available from the authors.Goerlich Sanchis, FJ.; Cantarino Martí, I. (2013). A population density grid for Spain. International Journal of Geographical Information Science. 27(12):1-17. https://doi.org/10.1080/13658816.2013.799283S117271

    A ROC analysis-based classification method for landslide susceptibility maps

    Full text link
    [EN] A landslide susceptibility map is a crucial tool for landuse spatial planning and management in mountainous areas. An essential issue in such maps is the determination of susceptibility thresholds. To this end, the map is zoned into a limited number of classes. Adopting one classification system or another will not only affect the map's readability and final appearance, but most importantly, it may affect the decision-making tasks required for effective land management. The present study compares and evaluates the reliability of some of the most commonly used classification methods, applied to a susceptibility map produced for the area of La Marina (Alicante, Spain). A new classification method based on ROC analysis is proposed, which extracts all the useful information from the initial dataset (terrain characteristics and landslide inventory) and includes, for the first time, the concept of misclassification costs. This process yields a more objective differentiation of susceptibility levels that relies less on the intrinsic structure of the terrain characteristics. The results reveal a considerable difference between the classification methods used to define the most susceptible zones (in over 20% of the surface) and highlight the need to establish a standard method for producing classified susceptibility maps. The method proposed in the study is particularly notable for its consistency, stability and homogeneity, and may mark the starting point for consensus on a generalisable classification method.Cantarino-Martí, I.; Carrión Carmona, MÁ.; Goerlich-Gisbert, F.; Martínez Ibáñez, V. (2018). A ROC analysis-based classification method for landslide susceptibility maps. Landslides. 1-18. doi:10.1007/s10346-018-1063-4S118Armstrong MP, Xiao N, Bennett DA (2003) Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann Assoc Am Geogr 93(3):595–623. https://doi.org/10.1111/1467-8306.9303005Atkinson P, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24(4):373–385. https://doi.org/10.1016/S0098-3004(97)00117-9Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010Baeza C, Lantada N, Amorim S (2016) Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Science 75:1318. https://doi.org/10.1007/s12665-016-6124-1Basofi A, Fariza A, Ahsan AS, Kamal IM (2015) A comparison between natural and head/tail breaks in LSI (landslide susceptibility index) classification for landslide susceptibility mapping: a case study in Ponorogo, East Java, Indonesia. 2015 International Conference on Science in Information Technology, pp 337–342Cantarino I (2013) Elaboración y validación de un modelo jerárquico derivado de SIOSE. Revista de Teledetección 39:5–21Carrara A, Crosta GB, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3–4):353–378. https://doi.org/10.1016/j.geomorph.2006.10.033Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472COPUT (1998) Lithology, exploitation of industrial rocks and landslide risk in the Valencian Community. Thematic Mapping Series. Department of Public Works of the Valencian Regional GovernmentDrummond C, Holte RC (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65(1):95–130Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51(2):241–256. https://doi.org/10.1007/s00254-006-0322-1Evans IS (1977) The selection of class intervals. Transactions of the Institute of British Geographers. Contemp Cartograph 2(1):98–124. https://doi.org/10.2307/622195Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions, Book Series: Wiley Series in Probability and Statistics. John Wiley & Sons. Print ISBN: 9780471526292. doi: https://doi.org/10.1002/0471445428Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Remote Sens 70(5):627–633Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. SAGE Publications, Thousand Oaks 270 ppFrattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1–4):62–72. https://doi.org/10.1016/j.enggeo.2009.12.004Geisser S (1998) Comparing two tests used for diagnostic or screening processes. Stat Probability Lett 40:113–119Greiner M, Pfeiffer D, Smith RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45:23–41Günther A, Reichenbach P, Malet JP, van den Eeckhaut M, Hervás J, Dashwood C, Guzzetti F (2013) Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 10:529–546. https://doi.org/10.1007/s10346-012-0349-1Günther A, Van Den Eeckhaut M, Malet J-P, Reichenbach P, Hervás J (2014) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs Geoinf 10(3):330–341. https://doi.org/10.1016/j.jag.2008.01.003Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184. https://doi.org/10.1016/j.geomorph.2006.04.007Hervás J (2017) El inventario de movimientos de ladera de España ALISSA: Metodología y análisis preliminar. In: Alonso E, Corominas J, Hürlimann M (Eds.), Taludes 2017. Proc. IX Simposio Nacional sobre Taludes y Laderas Inestables, Santander, 27–30 June 2017. CIMNE, Barcelona, pp. 629–639Jaedicke C, Van Den Eeckhaut M, Nadim F et al (2014) Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull Eng Geol Environ 73:325. https://doi.org/10.1007/s10064-013-0541-0Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartograph 7:186–190Jiang B (2013) Head/tail breaks: a new classification scheme for data with a heavy-tailed distribution. Prof Geogr 65(3):482–494. https://doi.org/10.1080/00330124.2012.700499Kiang MY (2003) A comparative assessment of classification methods. Decis Support Syst 35(4):441–454. https://doi.org/10.1016/S0167-9236(02)00110-0Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174Langping L, Hengxing L, Changbao G, Yongshuang Z, Quanwen L, Yuming W (2017) A modified frequency ratio method for landslide susceptibility assessment. Landslides 14:727–741. https://doi.org/10.1007/s10346-016-0771-xLee S (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Process Landforms 32:2133–2148. https://doi.org/10.1002/esp.1517Liu C, Frazier P, Kumar L (2007) Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ 107(4):606–616. https://doi.org/10.1016/j.rse.2006.10.010López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F (2014) Optimal cutpoints: an R package for selecting optimal cutpoints in diagnostic tests. J Stat Softw 61(8):4Malet JP, Puissant A, Mathieu A, Van Den Eeckhaut M, Fressard M (2013) Integrating spatial multi-criteria evaluation and expert knowledge for country-scale landslide susceptibility analysis: application to France. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin. https://doi.org/10.1007/978-3-642-31325-7_40McGee S (2002) Simplifying likelihood ratios. J Gen Intern Med 17:647–650Metz C (1978) Basic principles of ROC analysis. Semin Nucl Med VIII(4):183–198Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. https://doi.org/10.1007/s10346-006-0036-1Ohlmacher G, Davis J (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343. https://doi.org/10.1016/S0013-7952(03)00069-3Powell RL, Matzke N, de Souza C Jr, Clark M, Numata I, Hess LL, Roberts DA (2004) Sources of error accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens Environ 90(2):221–234. https://doi.org/10.1016/j.rse.2003.12.007Saaty T (1980) The analytic hierarchy process. McGraw Hill, New YorkSmits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and proposal for a cost-based approach. Int J Remote Sens 20:1461–1486Stehman SV, Czaplewski RL (1998) Design and analysis of thematic map accuracy assessment: fundamental principles. Remote Sens Environ 64:331–344Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet J-P, Montanarella L, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 8:357–369Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural hazards. UNESCO, ParisZhu X (2016) GIS for environmental applications. Routledge, Abingdon, p 490Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–57

    Unveiling the strong interaction among hadrons at the LHC

    Get PDF
    ALICE Collaboration., Acharya, S., Adamová, D. et al. Publisher Correction: Unveiling the strong interaction among hadrons at the LHC. Nature 590, E13 (2021). https://doi.org/10.1038/s41586-020-03142-2The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at root s = 13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (dN(ch)/d eta similar to 26) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM).Peer reviewe
    corecore